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Secure Federated Learning 
Jose-Luis Ambite, Srivatsan Ravi, Greg Ver Steeg 

Information Sciences Institute, University of Southern California 

There are situations where data relevant to a machine learning problem are distributed across 
multiple locations that cannot share the data due to regulatory, competitiveness, security, or privacy 
reasons. Federated Learning (FL) is a promising approach to learn a joint neural network model over 
all the available data across silos without transferring data to a centralized location. However, federated 
learning is challenging. In many cases, the sites participating in a federation have different data 
distributions, computational, and communication capabilities. In these heterogeneous environments 
existing approaches exhibit poor performance, including slow model convergence, high energy cost, or 
high communication requirements. Moreover, securing the data and the neural model from attacks that 
would disclose sensitive information is critical. 

We have developed a Secure Federated Learning 
architecture that learns efficiently in heterogenous 
environments and provides strong security guarantees. 
This architecture was recently developed under funding from 
the DARPA Artificial Intelligence Exploration Cooperative 
Secure Learning program [1,2,3,4,7]. Figure 1 shows a 
sketch of the architecture. Each site (learner) trains on its 
local dataset for some time, then sends its neural model 
parameters (e.g., gradients, weights) to a Federation 
Controller, which aggregates the local models from multiple 
sites into a community model. This community model is sent 
back to the sites for continued training and the process 
repeats. The architecture is general; it supports a wide 
variety of federated training policies, neural network 
architectures (e.g., convolutional, recurrent, transformers), 
and data types (e.g., images, text, structured, multimodal). 

Our architecture is secure and keeps data at all sites 
private. Data never leaves a site. Model parameters are 
encrypted before transmission. Transmission of model 
parameters between a site and the federation controller is 
through secure channels. The community model is computed 
under fully-homomorphic encryption using the CKKS 
construction [8], so even if the controller was compromised 
the community model cannot be attacked. In [2] we show that 
learning with or without encryption achieves the same 
learning accuracy, with a modest increase in computation 
time (~15%). We are also investigating a Pallier scheme that 
splits encryption into offline and online phases, which has 
significantly less overhead during (online) federated training. 

Unfortunately, current deep learning models are highly 
susceptible to inversion and membership attacks [3], which 
can recover information about training data given only 
access to the model. When a site receives the community 
model, it decrypts it for further training, thus a curious site 
could perform an attack. A membership attack consists of 
discovering whether some sample data was used to train a 
model. If the task pursued by the federation is sensitive, this is unacceptable. For example, if the 
federation task is person or object identification in video or images, a site can probe with its own images 
to reveal if any of them was present in other sites in the federation, which could be a security breach.  

Fig 1. Secure Federated Learning [2] 

Fig 2. Information-theoretic defenses 
against membership attacks. Our non-
unique gradients method outperforms 
differential privacy. x-axis: Task Error 
(lower is better), y-axis: Membership 
attack success % (lower is better). 

Fig 3. Efficient Federated Learning in 
heterogenous environments [1] 

Baseline (no defense)
Gradient noise
Unique gradients
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We have been pursuing several methods to prevent information leakage from neural models: 
• Information-theoretic privacy guarantees. We have developed a method that preferentially add

noise that obscures unique information contributed by individual samples. Figure 2 shows
experimental results where our method performs better than differential privacy. While differential
privacy is the gold standard for protecting data, in practical deep neural networks training scenarios
enforcing differential privacy often destroys task performance [3]. Additionally, theoretical results
show that information-theoretic methods can improve task performance by bounding the
generalization error for deep neural networks [9].

• Invariant representation learning. We learn representations of data that are invariant to sensitive
attributes. In our experiments in neuroimaging, we find that each fMRI scanner has a unique
fingerprint and “erasing” this information improves task performance, while also improving privacy
[10]. In security applications, we do not expect threats to depend on the type of surveillance
equipment used for detection. Therefore, we may purposely learn representations that are invariant
to the equipment both to obscure sensitive information about the data source and to improve the
generalizability of the model to different data sources.

• Sparsification: Sparsifying/pruning models (both in federated and non-federated settings) is another
way to reduce over-fitting that also has privacy benefits. We plan to investigate the privacy
guarantees of our work on progressive sparsification for federated training [7]. This training policy
has the additional benefit of reducing communication costs.
We have developed methods for efficient federated training [1,4,7]. Figure 3 shows how our training

policies (blue lines, top-left) converge faster than alternatives in heterogeneous data distributions (see 
plot insets) and computational environments. Due to their fast convergence, our policies are 3 to 9 times 
more energy efficient in reaching a given accuracy [1]. 

We propose to apply our Secure Federated Learning methods to enable distributed analysis of 
sensitive data across agencies without sharing data and ensuring that no information from a site can 
leak into any other site. Our architecture is containerized to facilitate deployment. We have 
demonstrated the benefits of our approach in biomedical domains where the protection of patient data 
is paramount. Since our architecture is general, it can be applied to other sensitive domains. Possible 
DHS applications include: 1) analysis of distributed image or video assets that must remain private (e.g., 
object, entity, or activity detection in surveillance or satellite images, fake-video detection); 2) cross-silo 
NLP over distributed private documents (e.g., entity or event extraction in intelligence reports, detection 
of spear-phishing/spam across private emails servers, private sentiment analysis); 3) multisite analysis 
of security events to detect intrusions (here in addition to privacy concerns, the large amount of local 
data makes it impractical to transmit data to a centralized site for analysis); and 4) private distributed 
multimodal data analysis (e.g., joint image, text, sensor data analysis). 
[1] Stripelis, Ambite, Thompson. Semi-Synchronous Federated Learning for Energy-Efficient Training and
Accelerated Convergence in Cross-Silo Settings. ACM TIST. In press, doi:10.1145/3524885. 2022.
[2] Stripelis et al. Secure neuroimaging analysis using federated learning with homomorphic encryption.
Int’l Symp Medical Information Processing and Analysis (SIPAIM), 2021.
[3] Gupta, Stripelis, Lam, Thompson, Ambite, ver Steeg. Membership inference attacks on deep regression
models for neuroimaging. Medical Imaging with Deep Learning (MIDL). 2021.
[4] Stripelis Ambite, Lam, Thompson. Scaling neuroscience research using federated learning. In IEEE
International Symposium on Biomedical Imaging (ISBI), Nice, France, 2021.
[5] Harutyunyan et al. Improving generalization by controlling label-noise information in neural network
weights. In International Conference on Machine Learning (ICML), 2020.
[6] Jaiswal, Brekelmans, Moyer, Ver Steeg, AbdAlmageed, Natarajan. Discovery and separation of features
for invariant representation learning. arXiv:1912.00646, 2019.
[7] Stripelis, Gupta, ver Steeg, Ambite. Federated Progressive Sparsification (Purge, Merge, Tune)+.
arXiv:2204.12430. 2022.
[8] Cheon, J. H., Kim, A., Kim, M., and Song, Y., Homomorphic encryption for arithmetic of approximate
numbers, in Advances in Cryptology, ASIACRYPT 2017, Takagi, T. and Peyrin, T.,eds., 409-437. 2017.
[9] Harutyunyan, Raginsky, Ver Steeg, Galstyan. Information-theoretic generalization bounds for black-box
learning algorithms. Advances in Neural Information Processing Systems 34 (NeurIPS). 2021.
[10] Moyer, Ver Steeg, Tax, Thompson. Scanner invariant representations for diffusion MRI harmonization.
Magnetic Resonance Medicine 84: 2174– 2189. 2020
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Privacy-preserving Graph Analytics:
Secure Generation and Federated Learning
Dongqi Fu†, Jingrui He†, Hanghang Tong†, and Ross Maciejewski§

†University of Illinois at Urbana-Champaign, §Arizona State University
{dongqif2, jingrui, htong}@illinois.edu, rmacieje@asu.edu

ABSTRACT
Directly motivated by security-related applications from the Home-
land Security Enterprise, we focus on the privacy-preserving anal-
ysis of graph data, which provides the crucial capacity to represent
rich attributes and relationships. In particular, we discuss two direc-
tions, namely privacy-preserving graph generation and federated
graph learning, which can jointly enable the collaboration among
multiple parties each possessing private graph data. For each direc-
tion, we identify both ‘quick wins’ and ‘hard problems’. Towards
the end, we demonstrate a user interface that can facilitate model
explanation, interpretation, and visualization. We believe that the
techniques developed in these directions will significantly enhance
the capabilities of the Homeland Security Enterprise to tackle and
mitigate the various security risks.

1 INTRODUCTION
Nowadays, the Homeland Security Enterprise is facing unprece-
dented challenges in multiple critical areas, such as identifying and
preventing targeted violence and mass attacks, building resilient
critical infrastructure, countering human trafficking, etc. Address-
ing these challenges requires collaborative efforts from all levels
of government, the private and nonprofit sectors, and individual
citizens. In particular, effective and efficient data collection, sharing,
analysis, and sense-making are at the core of many decision making
processes in these areas. Due to the distributed, sensitive and/or
private nature of the large volume of involved data (e.g., personal
identifiable information, images and video from surveillance cam-
eras or body camera), it is thus of great importance to make use of
the data while avoiding the sharing and use of sensitive informa-
tion. In this paper, we focus on graph data, or network data, due to
their rich representation capabilities to encode the multi-modality
time-evolving attributes for entities (e.g., individuals, locations) as
node attributes in the graph, and to encode the various types of
relationships among entities via edges.

The main goal of this paper is to focus on privacy-preserving
analysis of graphs. In particular, we aim to explore key research
questions and privacy-enhancing technologies that target the fol-
lowing two areas: (A1) privacy-preserving techniques for creating,
maintaining and linking anonymous identities and profiles; and (A2)
multiparty and homomorphic computation to allow for analysis
of datasets held by multiple parties without the need to physically
combine datasets. The techniques developed for these areas to-
gether will enable the collaboration among multiple parties each
possessing private graph data.

More specifically, we consider the following two directions for
the two areas respectively. For (A1), a promising direction is to
generate synthetic graphs in a privacy-preserving manner, such
that the generated graphs can be shared with collaborators without

revealing sensitive information on either the node level (node-
DP) or the edge level (edge-DP). For (A2), a promising direction is
to perform federated learning among multiple parties, or clients,
such that the central server can build robust, effective and efficient
predictive models while preserving the privacy of individual clients.
Next, we elaborate on the two directions, including both ‘quickwins’
and ‘hard problems’, followed by additional discussions regarding
the development of the user interface that could enable subject
matter experts to make effective use of the developed techniques.

2 PRIVACY-PRESERVING GENERATION
Graphs represent complex relational information between entities,
such that modeling the graph generation process and then gener-
ating many more meaningful graphs could contribute to various
applications [3]. However, mimicking the observed graph as much
as possible will induce a privacy risk after the generation [11]. For
example, a node’s identity is highly likely to be exposed in the gen-
erated social network if its connections are mostly preserved, which
means a degree-based node attacker will easily detect a vulnera-
bility in the generated graph with some background knowledge.

2.1 Quick Wins
For privacy-preserving static graph generation, current solutions
can be roughly classified into two types that can be readily applied.
First, the anonymization is directly performed on the observed
topology to generate new graph data, such as randomizing the adja-
cency [14], injecting the connection uncertainty [9], or permutating
the connection distribution under the edge-level differential privacy
(edge-DP) [10]. Second, following the synergy of deep learning and
differential privacy [1], deep generative models for graphs are re-
cently proposed under privacy constraints. To be specific, in [13],
the privacy scheme is added to the gradient descent phase of the
generation learning process.

2.2 Hard Problems
Most, if not all, of privacy-preserving graph generation methods
consider the observed graphs as static. However, in the complex
real-world scenarios, the graphs are usually evolving over time [4],
which brings critical challenges to the current privacy-preserving
static graph generation process. To the best of our knowledge, how
to generate privacy-preserving temporal graphs largely remains
open. For example, (1) unlike the abundant research on static graphs,
what kind of time-aware information is sensitive and should be hid-
den in the generated graph to protect entities’ privacy is not clear;
(2) even if the sensitive information is determined, the time-aware
protection mechanism is not yet available; (3) once the protection
mechanism is designed, it can be challenging to maintain the gen-
eration utility at the same time with privacy constraints.
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3 FEDERATED LEARNINGWITH GRAPHS
According to [6], "Federated learning (FL) is a machine learning
setting where many clients (e.g. mobile devices or whole organi-
zations) collaboratively train a model under the orchestration of a
central server (e.g. service provider), while keeping the training data
decentralized." This problem setting is particularly important for
privacy-preserving analysis of private graph data that might reside
on multiple clients such as the servers for various organizations.
In other words, it enables centralized decision making using all
available graph data, while avoiding physically combining datasets.

In the past few years, federated learning has been extensively
studied, focusing on research problems such as model robustness
to adversarial attacks, and data distribution among clients. Despite
some existing work using graph data (e.g., [5]), robust federated
learning with graph data largely remains under-explored.

3.1 Quick Wins
In general, federated learning systems can be vulnerable to attacks
and failures, e.g., Byzantine attacks can lead to the convergence to
an unsatisfactory model or even divergence [2]. A common defend-
ing mechanism is to replace the gradients averaging with robust
estimation of the center [2]. These methods have proven Byzantine-
robustness when data from different clients are independent and
identically distributed (IID). On one hand, these methods can be
directly adapted to model graph data by using, e.g., graph neural
networks [12]. On the other hand, the IID assumption regarding
client data can fail miserably due to the special properties of graph
data (e.g., homophily) as compared to other types of data.

To address this problem, one ‘quick win’ would be to observe the
performance of existing Byzantine-robust methods on graph data,
in order to study the impact of IID violation to the performance of
the centralized model. Based on the results from this study, another
‘quick win’ would be to develop robust federated learning methods
tailored for graph data that violate the IID assumption. For example,
in our previous work, we studied a special type of non-IIDness
among client data, i.e., label skewness, and proposed a two-stage
algorithm to estimate the true parameters of the centralized model
in the presence of Byzantine clients. Based on this work, one can
further study other types of non-IIDness among client data that may
fit various types of graph data, and design the robust algorithms.

3.2 Hard Problems
For privacy-preserving analysis of graph data, one major benefit
of federated learning is that it could avoid physically combining
private data from individual clients. On the other hand, some recent
studies on federated learning require the availability of clean and
non-sensitive data on the server (e.g., to enable knowledge distilla-
tion in the presence of heterogeneous models among clients [7]),
which can potentially be shared with clients without violating the
privacy constraints. However, such data can be difficult to obtain,
especially in security related applications (e.g., the identification of
targeted violence). Despite some recent work focusing on data-free
knowledge distillation for federated learning [15], the proposed
solutions cannot be readily applied on graph data due to the sig-
nificant difference in generating graph data vs. non-graph data. To
solve this ‘hard problem’, the graph generative models (as discussed
in the previous section) for both static and dynamic graphs can

potentially be integrated into the federated learning pipeline, to
enable the data-free robust federated learning for graph data.

4 USER INTERFACE
With the development of novel privacy-enhancing technologies,
one critical aspect is model explanation, interpretation, and visual-
ization facing various audience. This calls for effective and efficient
user interfaces that serve three major purposes: (1) to solicit feed-
back from subject matter experts for model improvement; (2) to
empower subject matter experts with deep insights regarding the
model and the data; (3) to aid decision making in various secu-
rity related applications. The following figure exemplifies such an
interface that we developed for explaining transfer learning [8].

Figure 1: Visual Analytics for Transfer Learning Interface

5 CONCLUSION
In this paper, we discussed privacy-preserving analysis of graph
data in two directions, namely secure generation and federated
learning. We believe that research efforts dedicated to these direc-
tions can lead to significantly enhanced capabilities of the Home-
land Security Enterprise for countering the various security risks.
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Twin Finder: Discovering and Assessing the
Vulnerability to AI-Generated Twin Identities
Mohamed Hussein, Research Lead, USC Information Sciences Institute

Introduction
Privacy enhancing technologies (PETs) enable sharing of personal information while preserving privacy.
PETs consider personal information that is obtained by the consents of the owners. However, there is a
recent trend in AI that makes it possible for personal identifiable information to be released and widely
shared without the consent of the owner. Modern artificial intelligence (AI) methods have the ability to
create pictures that match the quality of natural images, including synthesizing photo-realistic face
images of people who do not exist in real life. However, there is no guarantee that such people do not
exist. What if one of these AI-generated faces is an identical twin of a real person?! Such fake twins
can be used in ways their real counterparts never consented for, which can, intentionally or
unintentionally, cause harm.

Meanwhile, while modern AI models have been able to match or exceed human performance in
multiple tasks, such as face recognition and playing chess, they have also been found to be vulnerable
to making completely incorrect decisions upon imperceptible perturbations to their inputs. For example,
a face recognition model can be fooled into identifying an image of person A as person B if specific
maliciously-crafted imperceptible perturbations are applied to person A’s image. This phenomenon
underscores another type of AI-generated twins. These twins are generated to “look” to an AI model as
their real counterparts while they do not look the same way to humans. Such adversarial twins are
easier to generate and are potentially more harmful than the fake twins.

Existing research focuses on generating more naturally looking synthetic or adversarial face images
without addressing the problem of discovering and assessing the vulnerability of individuals to the
threats posed by these images. At USC Information Sciences Institute, we are developing a prototype
system (Twin Finder) that focuses on helping communities and law enforcement agencies discover and
assess the vulnerability of individuals to fake and adversarial twins.

The Twin Finder System
We are developing the Twin Finder web service, which employs deep learning methods to investigate
existing AI models by searching for AI-generated twins. The Twin Finder framework and design are
illustrated in Figure 1. The front-end of the service will allow users to upload one or more query face
images. After processing the user’s input, the system will generate a vulnerability report. The front-end
will securely communicate with a backend server. The Twin Finder server will query a set of face
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generation models for the closest matching fake twins by solving an inverse optimization problem. It will
also inspect a set of face matching models to find the closest adversarial twins. Adversarial twins
reported by the system will fall in two categories: (1) imperceptibly perturbed versions of the query
image that reliably fail matching with the query image, (2) imperceptibly perturbed versions of other
face images that can reliably be matched with the query image. For the latter type of adversarial twins,
the system will use a gallery composed of publicly available large face image datasets. The gallery will
be indexed to be efficiently searched for the closest matches before creating the adversarial
perturbations. The service will allow for uploading multiple faces for the same person, which will help
produce more reliable results. All images in the produced vulnerability report will be accompanied with
their matching scores with the closest query image. From these matching scores and the number of
found matches, an overall vulnerability score will be estimated.

Evaluation: The frontend interface will request user’s feedback on the quality of the produced results in
terms of how realistically-looking the produced images are and how similar or dissimilar they are to the
query images. The user’s feedback will be a critical part of our system’s evaluation. Cases in which the
user’s feedback significantly deviates from the system’s estimates will be investigated for possible
system enhancement.

About the Author: The author is a co-PI on USU ISI’s efforts under IARPA’s BRIAR program (on
biometrics) and DARPA’s GARD program (on adversarial robustness).

Final Note: Please, do not include in the conference material if the idea is not selected for discussion.
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Privacy-Preserving Video Surveillance System over Cloud
Vishesh Kumar Tanwar, Sanjay Madria, and Sajal K. Das

Department of Computer Science
Missouri University of Science and Technology Rolla, Missouri

1. Motivation
Privacy-Preserving Video Surveillance system (PPVSS) is an end-to-end framework for secure compu-
tations over the captured data to accomplish the dedicated utility task such as activity recognition and
object(s) tracking while protecting the private information of the unintentionally captured individuals.
For instance, PPVSS installed at an airport can recognize an occurrence of suspicious activity while
protecting travelers’ faces. Numerous privacy-enhancing technologies (PETs) in video surveillance have
developed in the last few years. Still, they are limited to protecting only a few private regions like
human faces and vehicle number plates. However, an individual’s sensitive information also contains
work and home locations, gender, race, clothes, religious affiliations, health issues, etc. In addition,
the storage and computational advancements in cloud computing enhance the existing surveillance
frameworks to store and manage the captured data on the cloud server in the plain domain (PD).

Figure 1: An end-to-end pictorial sce-
nario of PPVSS.

The cloud servers can utilize the transmitted data without
users’ consent which increases the concerns of users’ private infor-
mation leakage. The concerns of secure transmission and storage of
the surveillance data on cloud servers have been addressed by the
classical encryption schemes. However, these encryption schemes
cannot be used for secure computations, like training a deep convo-
lutional neural network (D-CNN), for the encrypted data over the
cloud server. The bottleneck of D-CNNs is leveraging the pixels’
inter-correlations of the input video frames to construct feature
vectors followed by a classifier. Contrasting, the traditional image
encryption schemes break the pixels’ inter-correlations and incor-
porate a noise-like structure. In this paper, we propose to design
and implement PETs to develop end-to-end PPVSSs (shown in
Fig. 1), protecting individuals’ private information without com-
promising the surveillance robustness for the next 3 to 5 years.

1.1 Research Challenges
Researchers [1] have presented a few task-specific PETs for image processing, protecting the dedicated
privacy attributes to ease the computations over the cloud servers. The leakage of sensitive private at-
tributes, other than faces, can easily be observed in Fig. 2. A few secure computation frameworks incor-
porate homomorphic encryption (HE) schemes with multi-party computations (MPC). However, these
schemes lack with three major drawbacks - storage, computation and communication latency overheads,
making them impractical for real-time PPVSS. A little research is done on incorporating sensor-based
security rather than secure computations on videos. Moreover, researchers utilized differential privacy

Figure 2: Existing PETs
protect only dedicated re-
gion of interest like faces.

(DP) and federated learning (FL) for training the D-CNNs in the local sys-
tems to protect the users’ data privacy. However, these schemes deal with two
significant issues: (1) DP creates a trade-off between the data security and the
model’s accuracy, and (2) FL is vulnerable to data reconstruction attack by
the cloud server [2,3].

1.2 Missing Research Gaps
Summarizing the research gaps in PETs for video surveillance are (1) lack of
defined privacy and security protocols/techniques, (2) Detection of privacy at-
tributes in the encrypted domain (ED) with applications to object/pedestrian
tracking, and (3) secure computations algorithms to develop efficient real-time
surveillance models in the centralized and decentralized cloud computing.

2. Initial Methodology and Results
Our initial work developed an end-to-end PET to train an image recognition model for users’ obfus-
cated data (using our designed approach) over a centralized server. Specifically, we implemented an
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image obfuscation scheme aiming to preserve the image’s local features and obfuscate the global spatial
information, as shown in Fig. 3 Contrasting existing methods, we utilized a bottom-top approach

Figure 3: Obfuscated image ob-
tained by our proposed approach.

incorporating non-invertible noise using the fractional-order chaotic sys-
tem to develop a block-based image obfuscation scheme. A significant
difference between our scheme in Fig. 3 and existing schemes (Ref. Fig.
2) can be observed in protecting complete image information. We have
experimented with our obfuscation algorithm on two datasets - CIFAR10
and CIFAR100 and achieved recognition accuracy of 80% and 74%, re-
spectively, using ResNet50 as a recognition model. From a security per-
spective, the obfuscated image obtained using our scheme cannot be re-
constructed due to the utilization of DP-noise and thresholding. More-
over, our scheme prevents visual layer attacks, protection from impersonation, man-in-the-middle, and
physical or stolen attack. Our scheme is secured under standard security attacks protecting the im-
age information. Also, the system parameters need not be kept secret to achieve privacy guarantees.

Figure 4: Block-diagram
depicting the relations of
objectives A, B and C for
two surveillance cameras.

3. Research Objectives: We propose to design the following three PETs to
develop the end-to-end real-time PPVSSs, in a manner shown in Fig. 4:

A. Privacy-Preserving Human Activity Recognition (HAR): We are
interested in developing an end-to-end PET for HAR by encrypting the spatial
features while preserving the temporal information only. Existing HAR PETs in
video surveillance have two phases - (i) data capturing and (ii) data encryption,
then transmission to the server for processing. The time window between the
two phases is highly vulnerable to attack. Therefore, we will design HAR PETs
to capture encrypted surveillance data, which can be directly transmitted to
the server for processing. Moreover, our PETs will incorporate with the existing
surveillance systems to recognize the suspicious activities in the ED.

B. Secure FL for Activity Recognition: Due to the diversified locations
of video surveillance systems, the existing systems are not robust for real-time suspicious activity recog-
nition. Moreover, state-of-the-art recognition systems utilize D-CNNs, which face domain adaptation
problems. Therefore, it is required to develop an FL-based framework while protecting individuals’
private information from the central server (as mentioned above), which we will accomplish as our
second research problem. Extending (A), we will incorporate HE and DP with the camera lens per-
forming computations locally on the installed camera in the encrypted form, followed by the model’s
weights-aggregation on the central server.

C. Tracking Road Activities in the Obfuscated Domain: We will develop a cloud-based PET
to track road activities such as a vehicle(s) and pedestrian(a) detection and tracking while protecting
private information, like vehicle number plate and location, passenger/pedestrian faces, etc. Previously,
we have developed PET for traffic monitoring in VANETS [4]; however, PET for object detection is
challenging because of maintaining object(s) pixel’s inter-correlation during secure computations for
same object reconstruction whenever required. Like, after detecting accidents in the ED, the vehicle
number plate and passenger(s) face are required in the PD to provide medical help or make fines.
Existing detection PETs are limited to the traditional pixel-permutation-based approach which are not
computationally and communicationally robust for high-resolution surveillance videos. We will utilize
chaotic systems and DP to develop a real-time on-site irreversible anonymization function to address
these concerns. Further, we will utilize PET of (B) to improve robustness in diversified locations. Our
PPVSS model will detect the moving object(s) in the obfuscated data over the cloud server, raise the
alarm whenever a violation occurs, and provide the object information to the authorized person.
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Introduction 
Video-analytics-as-a-service enables a wide range of real-world applications, e.g., video surveillance, 

smart shopping systems like Amazon Go, elderly person monitoring systems. A key concern in such 
services is the privacy of the videos being analyzed, as analyzing such information-rich video data may 
reveal personal information like an individual’s daily routine, home location, gender, race, clothes, etc. 
Therefore, there is a pressing need for solutions to privacy-preserving video analysis.  

A simple-yet-effective solution for privacy preservation is to use very low-resolution videos via down-
sampling. However, the performance of the utility application such as action recognition would suffer 
greatly due to significant information loss. Another set of methods use pretrained object-detectors to detect 
the privacy regions and then remove or modify the detected regions using synthesis [1] or blurring [2]. 
However, the detection-based approaches require the bounding-box level annotations for the privacy 
attributes, which are time-consuming and expensive to obtain. The most recent work [3] proposed to learn 
an anonymization function through an adversarial training framework to remove the privacy features from 
videos. However, this method also requires the annotation of privacy attributes (e.g., skin color, face, gender, 
etc.) from videos to perform the supervised training.  

Proposed Approach 
In light of the limitations of the existing privacy-preserving video analysis methods, we, for the first 

time, proposed a novel training framework which removes privacy information from input video in a self-
supervised manner without requiring privacy labels. This work [4] was accepted in CVPR 2022. Our 
method has been successfully applied to privacy-preserving video action recognition – one of the most 
popular applications in video analytics.  

Instead of just focusing on the cues based on the privacy annotations, our goal is twofold: 1) learning 
an anonymization function that can remove all spatial cues in all frames without significantly degrading 
action recognition performance; and 2) learning the anonymization function without any privacy 
annotations. To achieve this goal, we introduce a novel self-supervised learning framework for privacy 
preserving action recognition. The key idea of our proposed framework is to learn an anonymization 
function such that it deteriorates the privacy attributes without requiring any privacy labels in the 
training stage, and maintains the performance of action recognition task. The proposed framework mainly 
consists of three components as shown in Fig. 1: (1) Anonymization function (𝑓!); (2) Self-supervised 
privacy removal branch; and (3) Action recognition or utility branch. 

Fig. 1. A schematic of our framework for privacy preserving video action recognition. Please refer to our 
paper [4] for more details.   
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Specifically, the anonymization function is a learnable transformation function, which transforms the 
video in such a way that the transformed information can be useful to learn action classification on any 
target model, but not useful to learn any privacy identification model. A novel self-supervised learning 
method is developed based on the contrastive learning framework [5] to maximize the agreement between 
two frames of a same video and maximize the disagreement between frames of different videos.  By 
maximizing the contrastive loss, it changes the input in such a way that it decreases agreement between 
frames of the same video. Intuitively, we know that frames of the same video share a lot of semantic 
information, and minimizing the agreement between them in the feature representation space results in 
destroying (i.e., unlearning) most of the semantic information of the input video. Since this unlearned 
generic semantic information contained privacy attributes related to human, scene, and objects; we end up 
removing private information in the input. In the meantime, the action recognition or utility branch is used 
to keep the useful information for maintaining the action recognition performance.  

Our proposed method achieved the state-of-the-art results in terms of action-privacy trade-off on 
several benchmark datasets as reported in [4]. Fig. 2 presents a visual example of the anonymized video 
using our self-supervised privacy preservation method. It clearly shows that the private information has 
been successfully removed. However, a standard action recognition method can still recognize the action 
“ApplyLipstick” accurately based on the anonymized video.  

Fig. 2. First row: original video; second row: anonymized video using our self-supervised privacy 
preservation method. The standard action recognition model can still correctly recognize the action class as 
“ApplyLipstick” based on the anonymized video. 

Future Research Agenda 
In our future work, we plan to extend our self-supervised privacy preserving method to other video 

analysis tasks such as temporal action localization, action detection, and video object segmentation. Our 
proposed method can be incorporated with the encryption approaches to further improve privacy-preserving 
sharing and analysis of images and video. Moreover, our proposed method can be applied in the federated 
learning paradigm, where the anonymization transformation in our approach can protect the data on local 
clients and combat data leakage. 
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Privacy-preserved capturing and processing of images and videos
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Problem space

Images and videos contain rich information about the environment and surrounding people, whether
or not those people were captured intentionally (i.e., subjects in those photos or videos) or inci-
dentally (i.e., bystanders or passersby) [7, 6, 10, 9]. While obfuscating privacy-sensitive visual
content is possible by, e.g., image filters or encryption [5, 8], the primary hurdle to overcome is to
automatically understand what information should be considered as ‘private’ in a given context.
In the case of surveillance or wearable cameras used by the members of law enforcement agencies,
this issue is further complicated by the fact that some data that was filtered out may be required
later to aid the investigation. Thus, one obvious first step towards privacy-preserving recording and
analyses of image and video data in this context seems to be ensuring the privacy of bystanders,
who are unrelated to the incidents. While conceptually straightforward, separating ‘bystanders’
from ‘subjects’ is extremely challenging as these constructs depend on the context and are difficult
to categorize automatically based only on visual data. In an experiment, we asked human partici-
pants to categorize people in images as bystanders or subjects; we found that different participants
labeled the same person differently for almost half of the images (N=5000) [1].

Our proposed solution and its potential impact

We leveraged cognitive science, machine learning, and computer vision to provide a fully automated
mechanism to detect bystanders in images. We developed a classifier that mimics human reasoning
in detecting bystanders using only image data so that bystanders’ privacy can be protected by, e.g.,
obfuscating their faces or bodies with image filters. We created a separate test dataset to evaluate
this model. Our model demonstrated 91.2% accuracy for images where all annotators agreed on a
single class label, and 78.6% accuracy for images in which the roles of subjects and bystanders were
ambiguous even to the human annotators (only 67% agreement). This fully automated and generic
classifier can be readily deployed to cloud servers to process images and videos after uploading
them, and on mobile and wearable devices (for in-device processing through model compression).
Additionally, this tool can be used to sanitize already stored images and videos. We also studied
image and video obfuscation methods to identify which filtering techniques are effective to obscure
different sensitive content: such as paper documents, electronic displays, and the surroundings [2,
3, 4]; all of such information is frequently captured by body-worn cameras [7, 6, 9].

Scientific basis of our methods.

Through a user study, we gained insight into how humans conceptualize ‘subjects’ and ‘bystanders’
in images, based on which we identified and validated a set of intuitive features that ‘make a person
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a bystander or a subject.’ These features were inferred from raw image data using several deep
learning models and then used to train the final classifier. Additionally, we experimented with other
models with different architectures and feature sets (e.g., fine-tuning large deep learning models),
and all of them performed worse than the one described above. We hypothesize that our approach
to identifying high-level features based on human intuition improves the signal-to-noise ratio of the
input data which results in better classification accuracy by the model. Finally, the decisions made
by our model can be easily explained as they are based on a few intuitive features; thus, our model
ensures transparency and reliability which are much-sought characteristics of automated analyses
in any domain, but particularly in policing and surveillance.
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Privacy Enhancing Technologies Ready for
the Homeland Security Enterprise

David W. Archer, PhD - Galois, Inc.
The Foundations for Evidence-Based Policymaking Act of 2018 (H.R.4174) mandates data
sharing to promote informed decision-making, but current approaches to sharing sensitive data
either put the data at risk or critically limit the utility of that sharing. Privacy-Enhancing
Technologies (PETs) can enable high-utility data sharing while eliminating risks to data
confidentiality, yet this opportunity has not yet been broadly proven because most PETs remain
naïve with regard to operational security, bewilderingly difficult to use, fragile to operate, or
thousands of times too slow. Here, we describe PET implementations positioned for “quick
wins”: either ready for transition today or that can be fully ready within a 2-year horizon. We are
ready to demonstrate these tools on real use cases at DHS and submit them to critical review of
their suitability for purpose. The PETs we describe are Private Set Intersection with Secure
Computation (PSI), and Zero Knowledge Proofs (ZKPs). Galois’ extensive experience in these
and other PETs covers 10 years and many successful DHS, DARPA, and IARPA projects.

PSI
Applicability. Applies to DHS challenges such as privacy-preserving

● Construction or application of watch lists based on multiple data sources

● Linking anonymous identities and profiles

● Linking / analysis of data held by multiple parties without physically combining datasets

Readiness1. TRL 7 (Successfully demonstrated in an operational environment). The software is
part of the Galois, Inc. open source PET library. We are actively seeking mission partners.

Overview. Our pilot project for the US Dept. of Education fully and accurately replaced a
statistical application that requires sharing of sensitive data among activities within that
Department2. A non-programmer intern at the Dept. used our tools to reproduce a portion of the
annual 2015–16 National Postsecondary Student Aid Study (NPSAS:16) report, showing
statistics on federal Title IV aid received by undergraduates in 31 categories for that academic
year. The pilot was conducted in the normal environment of the Dept. of Education network.

The pilot used the same source data used by the original application. Data comes from two
activities within the Department: the National Postsecondary Student Aid Study group (NPSAS)
at the National Center for Education Statistics (NCES) and the National Student Loan Data
System (NSLDS). Today, preparing the NPSAS reports requires that NSLDS must share
sensitive student financial information with NPSAS, and NPSAS must share students’ college
study program information and social security numbers with NSLDS. To avoid those disclosures
while successfully and efficiently providing the same statistics, our prototype uses PSI and

2 https://mccourt.georgetown.edu/news/a-federal-government-privacy-preserving-technology-demonstration/

1 According to the DHS Commercialization Office Technology Product Realization Chart, found at
https://www.dhs.gov/xlibrary/assets/product_realization_chart.pdf
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multi-party computation to link data and compute statistics without revealing sensitive data of
either party to each other (or to anyone else).

Specifically, we produced accurate results for average Federal Pell Grants, Subsidized Federal
Direct Loans, Unsubsidized Federal Direct Loans, and all Federal Direct Loans across institution
type, attendance pattern, and income level. The full-year workload ran in a few hours, with
computation and network burdens well within practical limits, and demonstrated that users
without significant programming experience or cryptographic expertise can use PETs to protect
data privacy in a production environment inside the Department’s network.

In other settings for the US Government, we use slight variants of this PSI capability at TRL 6 to
test whether any of a number of parties using network resources has a claim (for example, an
operational dependency) on an IP address; to de-conflict kinetic operation use of physical
locations during operational exercises; and to identify similarity between software executables.
A related capability achievable with this technology is the search for certain “triggers” in text or
audio while keeping the original media private, and revealing (perhaps only under court order)
only the portion of the sensitive dataset that matched one or more triggers.

Applicability to specific DHS use cases seems natural, with limited additional work. PSI enables
for example watch lists to be compared by matching on common identifiers and revealing only
matching entries; watch lists to be compared against passenger manifests, revealing only
passengers that “hit” on the list; and aggregation of profile information by linking on common
identifiers, and revealing/aggregating only information on matching profiles. PSI as we provide it
also enables linking with general analytics over multiple datasets without revealing those
datasets or physically combining them. Additional privacy measures to protect data from
compromise in the analytic results of these computations, such as differential privacy, can also
be included in the PSI analytic functionality.

ZKPs
Applicability: Applies to DHS challenges where data is sensitive, but choices based on that data
must be proven to meet agreed-on criteria without revealing the data to a verifying party (such
as an auditor, or external watchdog). Examples include:

● Proof that a person meets the criteria to appear on a watch list without revealing PII

● Proof that a FISA court warrant was carried out correctly without revealing gathered data

Readiness: TRL 5 (All technology components are integrated, Proof of Concept conducted). Our
tools are on the path to open source release. We are actively seeking mission partners.

Overview: As part of the DARPA SIEVE program, we have built and demonstrated the world’s
fastest, most scalable system for complex zero knowledge proofs. Successful, integrated
proofs-of-concept have demonstrated proofs of vulnerabilities in software (such as the TLS
Heartbleed vulnerability); proofs of memory safety of programs; and proofs that cryptographic
material is prepared according to correct protocol. Proofs such as those outlined above are very
likely to fit easily within the current capability of these tools.
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VaultDB: Facilitating Secure Analytics over Multiple Private Data
Sources

Xiao Wang
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Abstract

Data is changing practically every aspect of how the government does business. As agencies collect
data for a myriad of endeavors, from research to operations, this is creating a treasure trove of insights
waiting to be surfaced. To date, most of this data is siloed at its site of origin owing to privacy or security
concerns. Here, data custodians have a legitimate need to maintain exclusive access to their sensitive
data. On the other hand, these organizations would benefit from collaborating with one another when
their interests and expertise overlap. In this text, we describe VaultDB, a system that queries the union
of two or more private databases using cryptographic protocols such that the only information revealed
is that which can be deduced from the query’s answer. We also describe our results from deploying this
technology within healthcare institutions for clinical research over electronic health records.

VaultDB is a data analytics platform for jointly querying the records in two or more datastores while
keeping the secret inputs from each engine private. Like conventional data federations, it makes multiple
autonomous database systems available for querying with a unified SQL interface. The client queries the
union of these databases as if all of their data were stored in a single engine. VaultDB translates its queries
into secure computation protocols that the data providers evaluate jointly for a given query. Hence, the
private data never leaves the data owner’s site, and the only information revealed from a query is that which
can be deduced from its output. This output is only accessible to the individual who submitted the query.

VaultDB’s high assurance of security is backed by cryptographically secure multi-party computation
(MPC). MPC is an important subfield of cryptography studying protocols to enable two or more parties to
jointly compute a function over their private inputs without divulging them to others. Here, the computing
parties simulate a completely trustworthy, incorruptible third party by passing encrypted messages amongst
themselves. VaultDB uses the Efficient Multi-Party (EMP) Toolkit [7] as its back end. This open-source
project was started in 2016 and is being widely used and actively maintained. The toolkit was developed
to address two goals: 1) provide an easy way for researchers to build efficient cryptographic prototypes; 2)
provide a user-friendly interface for non-cryptographic developers to write privacy-preserving applications.

Secure computation over 
records of all data partners

2

Client 
Workstation

VaultD
B

How many patients 
suffer from X? 

N 
patients Crypto protocols to 

run query securely
1

Secret shares of query 
output (1/compute node)

3

Figure 1: VaultDB workflow. The analyst runs VaultDB on her machine and inputs Q. The system reveals
A to her alone and the data owners learn nothing about the secret inputs of their peers.
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Figure 1 demonstrates its workflow with an example query that counts the distinct employees that joined
all organizations in 2022. VaultDB connects seamlessly with existing database systems for SQL querying.
We released an open-source prototype of this, SMCQL [2]. In previous work, we verified the utility of SQL
over secure computation in a clinical research workload [1]. Since then, we have improved efficiency by
integrating differential privacy [3] and approximate query processing via input sampling [4].

VaultDB is well-positioned to support many government operations including finding collaborators,
searching for relevant private records, and exchanging intelligence from two or more sources on an entity
of interest. It can easily be queried such that it only divulges information if two or more agencies are
independently collecting information on the same entity.

Real-World Applications. In addition, our team has substantial expertise in bringing this technology to
real-world settings. We recently developed and deployed a HIPAA-compliant version of VaultDB [6] on the
Chicago Area Patient Centered Outcomes Research Network (CAPriCORN) [5], multi-institutional clinical
research network. We conducted a study on hypertension rates over 600,000 patient records in the Chicago
metropolitan area by deploying on-site at three health systems within this network show its efficiency and
scalability for distributed clinical research analyses without moving patient records from their site of origin.
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Rapid Prototyping of Secure Multi-Party Computation Applications 
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MIT Lincoln Laboratory 

For many applications, multiple parties want to collaborate to gain insights from their collective data but 

don’t want to share their own data due to security and privacy concerns. Current approaches to 

collaboration require the parties to trust each other or a third party with their sensitive data. These 

approaches are often undesirable, impractical, or impossible. Ideally, all parties could obtain the 

benefits of data sharing without actually sharing their data. 

Secure multi-party computation (MPC) is a type of cryptography that allows a group of parties to jointly 

compute results without sharing their data with each other or any trusted party [1]. By eliminating the 

need to trust others with sensitive data, MPC enables new collaborative applications that are currently 

restricted or prevented by security and privacy concerns. MPC protocols exist that can in theory be used 

to securely perform any computation. In recent years, these protocols have been implemented, 

improved, and shown to be practical for many applications [2]. 

MIT Lincoln Laboratory has developed a programming framework called Rapid Assembly of MPC 

Protocols (RAMP) that enables researchers to quickly prototype complex MPC applications. The RAMP 

framework has a layered architecture with a focus on modularity and generality. The lowest layer 

consists of MPC primitives for securely computing low-level arithmetic and Boolean operations [3], [4] 

on secret-shared data. On top of the primitives, we have implemented an extensive library of MPC 

gadgets, or data-oblivious algorithms for common computational building blocks. These gadgets 

abstract away complexity to allow high-level MPC functionalities to be built simply by composing a few 

gadgets together. Figure 1 illustrates the RAMP stack and an example of how a secure set intersection 

functionality decomposes into gadgets and primitives. RAMP also includes tools for evaluating the 

theoretical and empirical performance of MPC applications and building blocks. 

Figure 1. Rapid Assembly of MPC Protocols (RAMP) architecture and example functionality, gadgets, and primitives.  
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We have used the RAMP framework to prototype MPC solutions to a variety of problems. One common 

class of problems involves secure multi-party set operations. We have implemented secure MPC for a 

general version of the set intersection problem, where two or more parties with private datasets would 

like to learn which elements occur in at least a threshold number of the input sets, without revealing any 

other information. In addition, we have implemented secure computation of the similarity of two 

datasets. We have also combined this with secure thresholding or clustering to output information only 

about datasets that are highly similar. One example application area for secure set operations is 

collaborative cybersecurity. We have applied MPC for set intersection and similarity computations to 

cyber threat data such as malicious IP addresses, software vulnerabilities, and malware features. 

A related problem is secure database joins. We consider the setting where multiple parties holding 

tables with different columns would like to merge the tables into a single table based on a sensitive 

unique key column, without sharing the raw data and in particular without sharing the unique keys. We 

have implemented MPC for secure inner and outer join operations, using algorithms similar to secure 

set intersection. Depending on the application, the output may be either the joined database itself 

(without the unique keys) or only the result of some further computation on the joined database. 

Another area of growing interest is MPC for privacy-preserving machine learning. One example use case 

involves the application of watchlists, where one or more parties hold watchlists represented as models, 

and another party holds a sample and would like to learn whether that sample matches any individual in 

any of the watchlists, without any party learning any other information. We have prototyped MPC for 

probabilistic linear discriminant analysis, a machine learning approach with applications to speaker 

verification and face recognition. Specifically, we use MPC to securely compute the likelihood that two 

feature vectors are from the same speaker and determine whether the likelihood exceeds a threshold. 

Beyond the examples outlined above, RAMP is a general framework that enables the development of 

MPC solutions for a wide variety of problems. MPC is possible for any computation and already practical 

for many applications. Secure multi-party computation has significant potential to enable new types of 

collaboration and analysis currently precluded by data sharing concerns. 
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Privacy-preserving Error Resilient Record Linkage1

Over the past decade, private record linkage (PRL) approaches have been proposed to enable
data holders to integrate records without revealing the raw information. One class is based upon
secure multi-party computation (SMPC), which leverages cryptographically strong protocols. These
protocols enable similarity comparisons to be performed without revealing any information, other
than the input and output of the protocol. While secure in principle, the computationally expensive
encryption techniques (e.g., homomorphic encryption, secure circuit evaluation on big data etc.)
required to achieve SMPC do not scale well to very large databases with millions of records in it [1].
2

As an alternative, a second class of PRL, utilizes a weaker form of security based on data
transformation. These transformed values, referred to as encodings, are used as inputs to PRL. It
is critical to strike a balance amongst the competing priorities of accuracy, security, and efficiency
when identifying an appropriate data transformation method for PRL. Our past work [1] showed
that a transformation based on encoding values in a Record Level Bloom filter (RBF) is superior to
other SMPC based approaches (e.g., unique hashed or obfuscated identifiers, SMPC-based equality
joins, and SMPC-based similarity comparisons) in terms of efficiency and accuracy (see figure 1
for an example). Unfortunately, our past work does not provide any formal guarantees and only
secure against the known attacks of the time. In our ongoing work, we are improving the privacy
guarantees of the RBF schemes for PRL by leveraging trusted execution environments that are
currently available on the cloud (e.g., Microsoft confidential computing cloud). This way only RBF
encoded information can be sent to cloud after it is encrypted using secure public key encryption.
Once the encrypted records represented as RBF is sent to the cloud, they will be only decrypted
inside the trusted execution environments for record linkage purposes. Below, we provide further
details on different components of the proposed tool.

Creating privacy-preserving representation of record information for linkage. In
our past work [1], we created record level bloom filters (RBFs) that are tailored for private record
linkage while being resistant known privacy attacks. Figure 1 illustrates the construction of RBFs
for three fields for record linkage. Our evaluation based on publicly available North Carolina voter
registration (NCVR) database showed that using the construction described in Figure 1, and dice
coefficient based similarity metric on the RBFs, we can achieve record linkage accuracy close to the
scenarios where the entire records (even with errors) are available in plaintext. Furthermore, the
known attacks where not successful against the proposed RBF generation technique.

Leveraging cloud-based trusted execution environment tool for privacy-preserving
record linkage. To securely process the RBFs that are generated for different records, we lever-
age trusted execution environments (TEEs) to perform computation on encrypted RBFs. TEEs
allow users to execute programs securely in a manner that operating systems cannot directly observe
or tamper with program execution without being detected. For example, Intel Software Guard eX-

1Contact author: Murat Kantarcioglu, Univ. of Texas at Dallas, and DataSecTech, mu-
ratk@utdallas.edu

2Obviously if there is a unique identifier such as social security number (ssn) exists, then the simple hashing
approach used by some of the existing solutions could work. Unfortunately, it is known that ssn information may 
not be always accurate (e.g., people using their spouse ssn for insurance purposes). In this work, we target the case 
where there is no such uniquely identifying attribute for record linkage and/or such identifier may have e rrors and 
other information such as name and surname etc. need to be used for increased accuracy.
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Figure 1: RBF encoding generation. 1) Field Level Bloom Filter(FBF) parameterization
& generation. FBFs are sized based on the expected field length using n-grams of the string. In
this example, there are two hash functions per FBF. 2) Eligible bit identification. More secure
bits, shown with a heavy outline, are identified for inclusion in the RBF. 3) Field weighting. It
is determined that 25% of the bits in the RBF should be drawn from Forename, 50% of the bits
in the RBF should be drawn from Surname, and 25% of the bits in the RBF should be drawn
from City. 4) RBF parameterization & generation. mRBF is determined and eligible bits are
sampled according to the field weights. 5) RBF permutation. Bits in the RBF are randomly
permuted. The number of bits set in the RBF shown to the left and right is 11 and 15, respectively.
The number of bits in the intersection is 11, yielding a Dice coefficient of 0.84. See [1] for more
details.

tension (SGX) reduces the trusted code based (TCB) to a minimal set of trusted code (programmed
by the programmer) and the SGX processor. Still, building a robust secure application with SGX
is non-trivial due to several shortcomings of the SGX architecture. In particular, operating system
can still monitor memory access patterns by the secure trusted code. Access pattern leakage can
reveal a significant amount of information about encrypted data.

Currently, we are developing a privacy-preserving record linkage using TEEs on the cloud. Each
site will encrypt the RBFs with the public key of the TEE that is used on the cloud, and send
their encrypted RBF lists to TEE. TEE running on the cloud will decrypt the encrypted RBFs
and compute dice coefficient between the RBFs for matching. As a starting point, we adopt our
join algorithm [2] that is designed for TEE environments. This join algorithm can support any
similarity function and is designed not leak any information to an attacker that can observe the
memory access patterns of the TEE.
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Multiparty Homomorphic Encryption for Privacy-Protected Linking 

and Querying of Watchlists  
Kurt Rohloff 

krohloff@dualitytech.com 

Many security organizations across the United States (in federal, state, local and tribal 

governments and in private institutions such as airlines and other transportation agencies) are 

responsible for using human expertise and technologies to prevent and investigate threats.  These 

investigations often include querying sensitive datasets such as multiple watch lists, financial 

transaction information, surveillance images and video and more.  All of these queries and 

analyses to support investigations are information-based endeavors that require access to 

comprehensive, timely information to be effective, but are currently plagued by slow, labor 

intensive information gathering processes and regulations. 

Streamlining the process of accessing information for inter-organizational collaboration can 

accelerate and improve proactive prevention and investigations and ultimately to help address 

national security issues such as counter-terror and counter-narcotics missions, among many 

others.  Duality Technologies provides a Secure Querying capability to address these needs to 

privately query watch lists using homomorphic encryption technologies developed with support 

from DARPA.  We discuss how these Secure Query capabilities provided by Duality Technologies 

can be applied and extended for quick-wins and long-term investment. 

Using Fully Homomorphic Encryption for Privacy-Protected Investigations 

Duality Technologies has an extensible privacy technology platform built on top of homomorphic 

encryption for privacy-protected information sharing to support the fight against financial crimes 

as outlined above.  A concept of operations for this solution can be seen immediately below. 

 In this solution a user / investigator generates queries on sensitive data, such as a watch-list to 

support an investigation.  To protect the privacy and anonymity of the subject of investigation, and 

to maintain operational security, Duality provides a capability where the investigator encrypts their 

query, sends the encrypted query to a query hub, potentially in a federal cloud environment, to 

mask the source of the query.  The encrypted query is then sent on to multiple data hosts, such 
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as a financial institution (i.e., bank) or transportation provider (i.e., airline) to run over their data, 

generating an encrypted result.  The data owner will never know the subject of investigation and 

will never know the query run on its data.  The encrypted result is then sent on to the investigator 

who decrypts the result, thus accessing the results of their query to further their investigation.  

This operation could be run over multiple data sets in parallel, with aggregation and linking of the 

results of the queries.  

 

Operationally, investigators can initiate privacy-protected queries which are automatically 

distributed to other members. Members can automatically answer these queries - without seeing 

any sensitive data like PII. All data and results are aggregated and anonymized, offering the 

utmost in privacy and security safeguards. Importantly, data never leaves a member’s premises, 

meaning that data is decentralized and always protected. 

 

Encryption for real-life, post-quantum applications  

Duality’s core technology and team grew out of a legacy of open-source homomorphic encryption 

technologies developed for DARPA and the DoD.  All of our core encryption technologies are 

open-sourced, such in our PALISADE homomorphic encryption library (https://www.palisade-

crypto.org) and are used in the DoD privacy technology community.  We engage with multiple 

parts of the US government to apply this technology for national security needs, and we engage 

in S&T projects with the US government to generalize the capabilities, performance and scale of 

our offering.  Homomorphic encryption schemes used by Duality Technologies are post-quantum, 

meaning that they are resistant to quantum computing attacks.   

 

An S&T Vision with Quick Wins and Long-Term Value on Hard Problems 

All the watch-list query capabilities are currently operational and used by Duality customers, both 

commercially and in government.  Duality currently deploys these capabilities to support financial 

crime and anti-money-laundering capabilities to financial institutes, such as banks.   

 

Additional research and development effort could easily extend Duality’s capabilities as a “quick 

win” to provide broad generalizations of our current solutions to create, maintain, and link 

anonymous identities and profiles from multiple sources.  Example quick-win extensions include: 

• Enable investigators can homomorphically encrypt, share, and compare watchlists while 

preserving privacy, anonymity, and compliance 

• Allow watchlist owners to query one-another based on multiple data sources with results 

linked dynamically on an as-needed basis. 

We have early prototypes of the above functionalities we developed as a risk-reduction exercise.  

We also have initial capabilities to support querying on standard geospatial data frameworks. 

 

Duality Technologies also provides broad support for longer-term high-payoff solutions to “hard 

problems” to integrate into our solution, inclusive of. 

• Support for querying on imagery data, such as surveillance cameras or body cameras 

that we see as both short- and long-term value in a broader private query system.   

• Support for processing of graph data, including support for social network data. 
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Linking Without Leaking: Private Set Intersection

Mark Blunk Paul Bunn Samuel Dittmer Steve Lu Rafail Ostrovsky
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In many research contexts where multiple parties hold data, significant insight can be gained from
conducting statistical analyses across disjoint datasets; however, privacy considerations frequently
render collaboration and data-sharing infeasible. Such considerations are especially prohibitive in
highly regulated sectors that routinely generate and obtain data of a particularly sensitive nature,
including healthcare and social services, financial services, socio-economic research, the military,
and national security. At the same time, the sensitivity of these data is frequently highly correlated
with the value of information that can be derived from analyzing them, and as a result of this
tension, a significant amount of social benefit is left unrealized.

One significant area of application is in the construction and application of watch lists. Suppose
a transportation company (say, an airline or a train company) holds a dataset containing a passenger
manifest, while a government agency (say, the TSA) holds a dataset containing a list of people on a
watch list. In this setting, the transportation service party wishes to verify whether any passengers
are on the government’s watch list.

In the specific case of the DHS No Fly List, this problem is currently solved by transferring
all of the passenger lists to the government agency, which then compares this list to their internal
database. However, as privacy concerns grow, this arrangement may not always be tenable. The
solution to this watch list problem with the broadest privacy protections is a powerful technology
called Private Set Intersection (or PSI). This allows the transportation company and the government
agency to learn which passengers, if any, are on the government agency’s watch list, while ensuring
that the government agency learns nothing about the other passengers, and the transportation
company learns nothing about who is on the list (besides the names of the specific passengers).

The key feature of this situation that makes PSI applicable is that, once a passenger on both
the manifest and the watch list is identified, the privacy concerns are overruled by more pressing
considerations. In the case of the No Fly List, the more pressing consideration is a terrorist threat,
but this same pattern appears in many other contexts, making PSI a valuable tool.

For example, if an internet user wishes to learn if any of their passwords have been hacked, their
list of passwords becomes the “flight manifest”, and the list of known hacked passwords becomes
the “government watch list”. Here, the user does not wish anyone to have access to their passwords,
and the company maintaining the list of known hacked passwords does not want to spread that list
around to any malicious actors. But, for the particular case where the user’s password is in the list
of known hacked passwords, these privacy concerns are overruled by more pressing considerations -
namely, the user wants to change their password immediately, and so must know which passwords
to change.

As another example, the “flight manifest” could represent some list of persons observed near the
scene of a crime during a local police investigation, while the “watch list” could represent another
state or federal database of persons of interest in previous cases. The privacy concerns here might
be regulatory in nature, for example, there could be rules against sharing certain federal databases
too widely, and/or rules against sharing data from local police departments without probable cause.
Both of these concerns would be overruled precisely when the combined evidence from both lists
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showed the person warranted further investigation. More broadly, many problems of information
sharing between government agencies could be addressed in this way - whenever there are a series
of indicators that are insignificant individually, but deserve attention if all indicators are present
simultaneously.

At Stealth Software Technologies, Inc., as part of a recently completed Phase I Small Business
grant funded by NIST, we have developed a prototype tool for PSI that operates in the specific
setting of many parties interacting with a semi-trusted central coordinator computing their inter-
sections pairwise, that is, each party learns their intersection with each other party. Modifying the
example of a local law enforcement department above, this tool would be helpful when the depart-
ments of several nearby municipalities wished to share evidence with each other in the investigation
of (for example) a string of possibly related murders. We have tested our implemented prototype
extensively in local settings and in multi-server deployments on Amazon Web Services, and plan on
further developing and optimizing this work once we are approved for the next phase in this grant.

There is a variant of PSI, PSI with payloads that is also worth highlighting. In this scenario
the identifiers each have some associated data, and the protocol performs a computation on the
data of the matched identifiers. This tool is simultaneously more powerful, since additional data
statistics can be extracted, and more privacy-preserving, since now only the final statistic, and not
the intermediate records, are revealed.

For example, street cameras on either side of a busy city bridge could be used to compute the
average time required to cross the bridge by matching license plates of people driving onto and off
of the bridge. The act of driving onto and off of a bridge is not, of course, a pressing consideration
that warrants disclosing an individual’s identity. However, when instead the protocol computes
only the average time difference across all people who drove on the bridge, useful traffic information
can still be extracted without disclosing anyone’s identity. Such computations can be thought of
as a Private/Secure analogue of a SQL join, followed by an aggregate computation on the merged
dataset.

In projects funded by DARPA and Arnold Ventures, we have designed systems that allow mul-
tiple data owners to participate in such computations. In particular, they can compute cross-
tabulations of counts and averages. Our implementations have several components to enhance their
usability by non-experts in Cryptography. They are designed to integrate with modern RDBMS
systems, to operate on data in a streaming fashion, enabling the protocol to easily scale to large
input datasets, and make use of recent development in secure merge to optimize the overall algo-
rithmic complexity of the protocol. Both implementations have been tested on production servers
maintained by our respective partners (educational and state government entities) on these projects.

In summary, we feel that the field of Private Set Intersection presents a significant opportunity
to enable collaborative analyses among organizations that are currently unable to due to privacy
and security considerations. Our company and its consultants have experience in both research
and implementation development in this field, are excited to discuss any opportunities to use this
technology to solve real-world problems.
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